

Eilenberg on epimorphisms among groups

Group G, subgroup $H \subseteq G$. Can that inclusion be an epimorphism?

H of index 1 in G? — Yes (H = G).

H of index 2? — No (H is normal in G).

H of index ≥ 3 ? — Fix two cosets Ha, Hb of H, distinct from each other and from H, and define $\tau \in |G|!$ — an involution — by giving $\tau(x)$, for $x \in G$, as

$$\tau(x) = \left\{ \begin{array}{ll} xa^{-1}b \; (=h_0b \in Hb) \; , \; \text{if} \; x = h_0a \in Ha \; ; \\ x \; , & \text{if} \; x \notin Ha \; \cup \; Hb \; ; \\ xb^{-1}a \; (=h_0a \in Ha) \; , \; \text{if} \; x = h_0b \in Hb \; . \end{array} \right.$$

Write $\kappa_{\tau}: |G|! \to |G|!$ for conjugation by involution $\tau - \kappa_{\tau}(\sigma) = \tau \cdot \sigma \cdot \tau$. Compare left-regular representation $\rho: G \to |G|!$ ($\{\rho(g)\}(x) = gx$) with the composition $\kappa_{\tau} \cdot \rho: G \to |G|! \to |G|!$: For $h \in H$ and $x \in G$, $\{\{\kappa_{\tau} \cdot \rho\}(h)\}(x) = \{\kappa_{\tau}(\rho(h))\}(x) = \{\tau \cdot \rho(h) \cdot \tau\}(x) = \{\tau \cdot \rho(h)\}(\tau(x)) = \{\tau \cdot$

$$= \left\{ \begin{array}{l} \{\tau \cdot \rho(h)\}(\tau(h_0a)) = \{\tau \cdot \rho(h)\}(h_0b) = \tau(hh_0b) = hh_0a = \{\rho(h)\}(x) \;, \; \text{ if } x = h_0a \in Ha \;; \\ \{\tau \cdot \rho(h)\}(\tau(x)) = \{\tau \cdot \rho(h)\}(x) = \tau(hx) = hx = \{\rho(h)\}(x) \;, \; \text{ if } x \notin Ha \cup Hb \;; \\ \{\tau \cdot \rho(h)\}(\tau(h_0b)) = \{\tau \cdot \rho(h)\}(h_0a) = \tau(hh_0a) = hh_0b = \{\rho(h)\}(x) \;, \; \text{ if } x = h_0b \in Hb \;. \end{array} \right.$$

So $\kappa_{\tau} \cdot \rho = \rho$ on H. But $\{\rho(a)\}(e) = ae = a$, while $\{\{\kappa_{\tau} \cdot \rho\}(a)\}(e) = \{\kappa_{\tau}(\rho(a))\}(e) = \{\tau \cdot \rho(a) \cdot \tau\}(e)$ = $\{\tau \cdot \rho(a)\}(\tau(e)) = \{\tau \cdot \rho(a)\}(e) = \tau(ae) = \tau(a) = b \neq a$, so $\kappa_{\tau} \cdot \rho \neq \rho$, and $H \subseteq G$ was not epi.

Eilenberg, at NSF summer institute, Bowdoin College:

Why treat index 2 as special case?

Why mix left regular representation of G with right cosets of H?

If you need room for a good involutory permutation τ , just make room — add another point ∞ to the space G/H of left cosets gH of H, forming $E = G/H \cup \{\infty\}$, have $\tau \in E!$ interchange H with ∞ but leave the rest of G/H alone. Then do as before:

Write κ_{τ} : $E! \to E!$ for conjugation by the involution $\tau - \kappa_{\tau}(\sigma) = \tau \cdot \sigma \cdot \tau$; compose left-regular representation ρ : $G \to (G/H)! \subset E!$ ($\{\rho(g)\}(xH) = gxH$, $\{\rho(g)\}(\infty) = \infty$) with κ_{τ} : $E! \to E!$; for $h \in H$ and $C \in G/H \cup \{\infty\}$ ($C = xH(x \in G)$ or $C = \infty$), calculate $\{\kappa_{\tau} \cdot \rho(h)\}(C) = \infty$

$$\tau(\{\rho(h)\}(\tau(C))) = \begin{cases} \tau(\{\rho(h)\}(\tau(xH))) = \tau(\{\rho(h)\}(xH)) = \tau(hxH) = hxH = \rho(h)(C), (C = xH \neq H); \\ \tau(\{\rho(h)\}(\tau(H))) = \tau(\{\rho(h)\}(\infty)) = \tau(\infty) = H = \{\rho(h\}(C), (C = H); \\ \tau(\{\rho(h)\}(\tau(\infty))) = \tau(\{\rho(h)\}(H)) = \tau(H) = \infty = \{\rho(h\}(C), (C = \infty), (C$$

= $\{\rho(h)\}(C)$, so that $\kappa_{\tau} \cdot \rho$ and ρ agree on H.

Now let $g \in G$, and suppose $\kappa_{\tau} \cdot \rho(g) = \rho(g)$. Then $\{\kappa_{\tau} \cdot \rho(g)\}(H) = \{\rho(g)\}(H) = gH$. But in fact $\{\kappa_{\tau} \cdot \rho(g)\}(H) = \tau(\{\rho(g)\}(\tau(H))) = \tau(\{\rho(g)\}(\infty)) = \tau(\infty) = H$. So gH = H, and $g \in H$.

Thus $H \subseteq G$ is the equalizer of $\kappa_{\tau} \cdot \rho$ and ρ . In fact, inclusion $\eta \colon (G/H)! \subset E!$ and composition $\kappa_{\tau} \cdot \eta \colon (G/H)! \subset E! \to E!$ have equalizer $\{\pi \in (G/H)! \mid \pi(H) = H\}$. Pf.: $\pi \in (G/H)! \cdot \eta(\pi) = \{\kappa_{\tau} \cdot \eta\}(\pi) \Rightarrow \pi(H) = \{\eta(\pi)\}(H) = \{\{\kappa_{\tau} \cdot \eta\}(\pi)\}(H) = \{\tau \cdot \eta(\pi) \cdot \tau\}(H) = \{\tau \cdot \eta(\pi)\}(\infty) = \tau(\infty) = H$, QED.

[(Joyal, Categories, 6/'12): $H \subseteq G$ as equalizer of $\kappa_{\tau} \cdot \rho$ and ρ is pullback of this along ρ_0 : $G \to (G/H)$!]